Disruption of postnatal folliculogenesis and development of ovarian tumor in a mouse model with aberrant transforming growth factor beta signaling
نویسندگان
چکیده
BACKGROUND Transforming growth factor beta (TGFB) superfamily signaling is implicated in the development of sex cord-stromal tumors, a category of poorly defined gonadal tumors. The aim of this study was to determine potential effects of dysregulated TGFB signaling in the ovary using Cre recombinase driven by growth differentiation factor 9 (Gdf9) promoter known to be expressed in oocytes. METHODS A mouse model containing constitutively active TGFBR1 (TGFBR1CA) using Gdf9-iCre (termed TGFBR1-CAG9Cre) was generated. Hematoxylin and eosin (H & E) staining, follicle counting, and immunohistochemistry and immunofluorescence analyses using antibodies directed to Ki67, forkhead box L2 (FOXL2), forkhead box O1 (FOXO1), inhibin alpha (INHA), and SRY (sex determining region Y)-box 9 were performed to determine the characteristics of the TGFBR1-CAG9Cre ovary. Terminal deoxynucleotidyl transferase (TdT) labeling of 3'-OH ends of DNA fragments, real-time PCR, and western blotting were used to examine apoptosis, select gene expression, and TGFBR1 activation. RNAscope in situ hybridization was used to localize the expression of GLI-Kruppel family member GLI1 (Gli1) in ovarian tumor tissues. RESULTS TGFBR1-CAG9Cre females were sterile. Sustained activation of TGFBR1 led to altered granulosa cell proliferation evidenced by high expression of Ki67. At an early age, these mice demonstrated follicular defects and development of ovarian granulosa cell tumors, which were immunoreactive for granulosa cell markers including FOXL2, FOXO1, and INHA. Further histochemical and molecular analyses provided evidence of overactivation of TGFBR1 in the granulosa cell compartment during ovarian pathogenesis in TGFBR1-CAG9Cre mice, along with upregulation of Gli1 and Gli2 and downregulation of Tgfbr3 in ovarian tumor tissues. CONCLUSIONS These results reinforce the role of constitutively active TGFBR1 in promoting ovarian tumorigenesis in mice. The mouse model created in this study may be further exploited to define the cellular and molecular mechanisms of TGFB/activin downstream signaling in granulosa cell tumor development. Future studies are needed to test whether activation of TGFB/activin signaling contributes to the development of human granulosa cell tumors.
منابع مشابه
Control of ovarian primordial follicle activation
The ovarian follicles develop initially from primordial follicles. The majority of ovarian primordial follicles are maintained quiescently as a reserve for the reproductive life span. Only a few of them are activated and develop to an advanced follicular stage. The maintenance of dormancy and activation of primordial follicles are controlled by coordinated actions of a suppressor/activator with...
متن کاملMouse models of ovarian failure.
Ovarian failure leading to infertility can be caused by improper prenatal development of the fetal gonad or disruption of the complex postnatal process of folliculogenesis due to alterations in intragonadal or extragonadal regulation. It is critical to have physiological models that mimic events occurring during human development to understand, treat, and prevent ovarian failure in women. Many ...
متن کاملSmad signalling in the ovary
It has now been a decade since the first discovery of the intracellular Smad proteins, the downstream signalling molecules of one of the most important growth factor families in the animal kingdom, the transforming growth factor beta (TGF-beta) superfamily. In the ovary, several TGF-beta superfamily members are expressed by the oocyte, granulosa and thecal cells at different stages of folliculo...
متن کاملP-173: Evaluation of The Follicular Growth after Mouse Ovarian Organ Culture in The Medium Supplemented with Growth Differentiation Factor-9B (GDF-9B)
Background: Growth differentiation factor -9B (GDF-9B) is an oocyte derived growth factor, this protein is essential for development of ovarian follicles and act mainly by binding to its receptor on the surface of granulosa cells. The effect of this factor on the growth of follicles in various developmental stages particularly primordial and primary follicles is unknown. The aim of this study w...
متن کاملAberrant effect of genistein on placenta development expressed through alteration in transforming growth factor-β1 and alkaline phosphatase across the maternal serum, the placenta and the amniotic fluid
Objective(s): The mechanism via which genistein, the major isoflavone content of soya, adversely influenced placenta and fetal development was evaluated in pregnant laboratory rats.Materials and Methods: There were control, 2 mg/kg and 4 mg/kg genistein groups of rats with five sub-groups based on gestation termination day. At the end of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2017